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Abstract. A multiarc and curve graph is a simplicial graph whose vertices

are arc and curve systems on a compact, connected, orientable surface Σ.

We show that all connected, non-trivial multiarc and curve graphs preserved

by the natural action of PMod(Σ) and whose adjacent vertices have bounded

geometric intersection number are hierarchically hyperbolic spaces with respect

to witness subsurface projection. This result extends work of Kate Vokes on

twist-free multicurve graphs and confirms two conjectures of Saul Schleimer in

a broad setting. In addition, we prove that the PMod(Σ)-equivariant quasi-

isometry type of such a graph is uniquely classified by its set of connected

witness subsurfaces.

1. Introduction and main results

Let Σ be a compact, connected, orientable, non-pants surface possibly with

boundary such that χ(Σ) ≤ −1. We consider a broad class of natural combina-

torial models built from collections of arc and curve systems on Σ:

Definition 1.1. A multiarc and curve graph A on Σ is a simplicial graph whose

vertices are collections of disjoint isotopy classes of simple, essential arcs and curves

in Σ. A is a multicurve graph if V (A) consists of only multicurves.

Definition 1.2. A connected multiarc and curve graph A on Σ is admissible if

(i) PMod(Σ) preserves V (A) and extends to an action on A, and

(ii) if (a, b) ∈ E(A), then the geometric intersection i(a, b) is uniformly bounded.

Recall that a witness subsurface for A is an essential, non-pants subsurface that

meets every vertex of A. We prove the following:

Theorem 1.3. Let A be an admissible multiarc and curve graph on Σ and let X

denote its collection of witnesses. Then (A,X ) is a hierarchically hyperbolic space

with respect to subsurface projection to witness curve graphs CW , W ∈ X .

Theorem 1.4. The PMod(Σ)-equivariant quasi-isometry type of an admissible

multiarc and curve graph on Σ is uniquely determined by its connected witnesses.

We first show the same for partial marking graphs, whose vertex set consists

of markings in the sense of [MM00] which are “locally” complete and clean, in

Section 2. Admissible partial marking graphs include the 1-skeleton MC(1)(Σ)

of Masur and Minsky’s marking complex. Here, Theorem 1.4 defines a bijection:
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any set of essential, non-pants subsurfaces closed under enlargement and the ac-

tion of PMod(Σ) is the witness set for some admissible partial marking graph. In

Section 3, we show that any admissible multiarc and curve graph on Σ is PMod(Σ)-

equivariantly quasi-isometric to an admissible partial marking graph on Σ, via a

map coarsely preserving subsurface projection, whence Theorems 1.3 and 1.4 follow.

The present work is indebted to the excellent paper by Kate Vokes on the hierar-

chical hyperbolicity of twist-free multicurve graphs [Vok22], from which our results

borrow both inspiration and overall strategy.

1.1. Background. Given Σ = Σb
g a compact, connected, orientable surface with

genus g and b boundary components, let ξ(Σ) = 3g + b − 3 denote the complexity

of Σ, equal to the number of components in a maximal multicurve. For a multiarc

and curve graph A on a compact surface Σ, we define witness subsurfaces in the

usual way:

Definition 1.5. A compact, essential (π1-injective, non-peripheral) subsurface

W ⊂ Σ is a witness for A if W ̸∼= Σ3
0 and every arc and curve system in V (A)

intersects W .

Let πW : A → 2CW \ {∅} denote subsurface projection and for a, b ∈ V (A), let

dW (a, b) := diamCW (πW (a) ∪ πW (b)). Note that we do not require witnesses to be

connected: if W = V ⊔ V ′, let CW be the graph join CV ∗ CV ′.

We consider two conjectures of Saul Schleimer [Sch, §2.3] on the geometry of

multiarc and curve graphs: the first characterizes δ-hyperbolicity, and the second

proposes a distance formula in the sense of [MM00].

Conjecture 1.6 (Schleimer). Let M ≥ 0 and A be a multiarc and curve graph

such that (a, b) ∈ E(A) if and only if i(a, b) ≤ M . A is δ-hyperbolic if and only if

it does not admit disjoint connected witnesses.

Conjecture 1.7 (Schleimer). Let M ≥ 0 and A be a multiarc and curve graph

such that (a, b) ∈ E(A) if and only if i(a, b) ≤M , and let X denote the collection

of witnesses of A. Then there exists C ′ = C ′(A) such that for any C > C ′, there

are constants K,E ≥ 0 such that

dA(a, b)
K,E
=

∑
W∈X

[dW (a, b)]C .

If a multiarc and curve graph A on Σ satisfies (i) of Definition 1.2, then we

will say that A has a natural PMod(Σ) action. We note that Schleimer does not

assume a natural action of PMod(Σ), and indeed there exist interesting complexes

lacking such an action. Nonetheless, assuming a natural PMod(Σ) action and

the connectivity of A (as we will for the remaining work), we observe that it is

equivalent in the conjectures above to require only that i(a, b) be uniformly bounded

for (a, b) ∈ E(A). In particular:

Remark 1.8. Let A be a connected multiarc and curve graph with a natural

PMod(Σ) action, and suppose A′ is obtained by adding edges between vertices

a, b such that i(a, b) < M . Then A ∼=
q.i.

A′.
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Rather than approaching Conjectures 1.6 and 1.7 directly, we appeal to a broader

geometric property: if A is hierarchically hyperbolic with the usual witness sub-

surface projection structure, then both conjectures follow immediately. We will

introduce hierarchical hyperbolicity and make precise these arguments at the end

of the section.

1.1.1. Low-complexity cases. Note that ξ(Σ) > 0 by assumption. When ξ(Σ) ≤ 0,

any multiarc and curve graph on Σ is empty or it is finite and Σ admits no essential

(non-peripheral) non-pants subsurfaces, except when Σ ∼= Σ0
1. In the latter case,

any admissible multiarc and curve graph is quasi-isometric to the curve graph and

Σ0
1 is the only witness, hence Theorems 1.3 and 1.4 hold trivially.

1.1.2. Twist-free multicurve graphs. In the sense above, Conjectures 1.6 and 1.7

were resolved positively for a broad class of examples by Kate Vokes in [Vok22].

Definition 1.9 (Vokes). A multicurve graph G on Σ is twist-free if it is admissible1

and admits no annular witnesses.

Theorem 1.10 (Vokes). Let G be a twist-free multicurve graph. Then (G,X ) is

a hierarchically hyperbolic space with respect to subsurface projections to witness

curve graphs CW , W ∈ X .

Theorem 1.4 and in fact a bijection analogous to Theorem 2.12 below follow easily

from Vokes’ results in the special case of twist-free multicurve graphs.

The existence of annular witnesses appears related to non-hyperbolicity, or equiv-

alently by Conjecture 1.6, the existence of disjoint connected witnesses. In particu-

lar, if ξ(Σ) > 1 and a multiarc and curve graph A on Σ admits an annular witness

A, then A admits a disjoint pair of connected witnesses, namely A and a comple-

mentary component. As a partial converse, if A is an arc and curve graph that

admits two disjoint witnesses W,W ′ separated by a unique complementary com-

ponent, then A admits an annular witness. For example, given Γ a relation on

π0(∂Σ) the Γ-prescribed arc graph A(Σ,Γ), defined by the author in [Kop23], is

the full subcomplex of A(Σ) spanned by arcs between boundary components in Γ.

By passing to projections to CΣ, A(Σ,Γ) may be viewed as an admissible multi-

curve graph; however, whenever Γ is bipartite (in particular, whenever A(Σ,Γ) is

non-hyperbolic), it may be seen that A(Σ,Γ) admits g−1 pairwise disjoint annular

witnesses where g is the genus of Σ, hence Theorem 1.10 does not apply.

Nonetheless, from Theorem 1.3 it follows immediately that A(Σ,Γ) is hierarchi-

cally hyperbolic with respect to the usual witness subsurface projection structure.

As an immediately application, let Ω be an orientable surface of infinite topological

type. We recall the grand arc graph G(Ω) defined in [BNV22], whose vertices are

arcs between ends of distinct maximal type, in the sense of the partial order given

in [MR20]. Suppose that Ω has exactly n distinct maximal end classes. Then for

an arbitrarily large witness W ⊂ Ω there exists a n-partite relation ΓW on π0(∂W )

such that, by extending arcs, A(W,ΓW ) quasi-isometrically embeds in G(Ω). Hence

choosing an exhaustion of Ω by connected witnesses, we have the following:

1Vokes actually requires a natural action of Mod(Σ); however, any subgroup containing

PMod(Σ) suffices for the arguments in [Vok22].
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Proposition 1.11. Suppose that Ω has exactly 2 distinct maximal end classes

and infinite genus. There exists an asymphoric hierarchically hyperbolic space of

arbitrarily large rank (see below) that quasi-isometrically embeds into G(Ω). □

More generally, the proposition also holds whenever Ω has infinitely many non-

maximal ends. By [BHS21, Thm. 1.15], it follows that asdimG(Ω) = ∞ whenever

Ω has exactly two maximal end classes and infinite genus or infinitely many non-

maximal ends; we note this fact may be likewise shown by explicitly constructing

quasi-flats.

1.1.3. Hierarchical hyperbolicity. Behrstock, Hagen, and Sisto introduced hierar-

chically hyperbolic spaces in [BHS17] to provide a common geometric framework

within which to study mapping class groups and cubical groups. In effect, hierar-

chical hyperbolicity provides an axiomatization and generalization of the geometric

structure of the mapping class groups of finite type surfaces elucidated in [MM00];

we direct the reader to [BHS19] for a full enumeration of the axioms, and to [Sis17]

for a non-technical discussion of hierarchical hyperbolicity and a survey of results.

We provide a brief description. Let X be a quasi-geodesic space. A hierarchically

hyperbolic structure (X,G) on X is comprised of the following:

• an index set G and a collection of uniformly δ-hyperbolic spaces {CW :W ∈
G} with associated projections πW : X → 2CW \ {∅};

• relations ⊑ (nesting) and ⊥ (orthogonality) on G;
• if U ⊑ V then a map ρVU : CV → 2CU and if additionally U ̸= V , a

set ρUV ⊂ CV . If not U ⊥ V and U, V are not ⊑-comparable, then a set

ρUV ⊂ CV and vice versa.

In addition, the above must satisfy nine axioms for (X,G) to be hierarchically hy-

perbolic. We consider the model example: the marking complex MC(Σ) defined

in [MM00], on which Mod(Σ) acts geometrically, is hierarchically hyperbolic with

respect to the index set G = {essential subsurfaces} and subsurface projections πW ,

with nesting and orthogonality determined by inclusion and disjointness, respec-

tively; ρVU is determined by subsurface projection, or the projection of boundary

components, as appropriate [BHS19, Thm. 11.1].

By defining a hierarchically hyperbolic structure analogously for partial marking

graphs, many of the axioms follow from the fact that they hold for MC(Σ). We

omit these here and enumerate two that we will check explicitly:

Ax. 1: (Projections.) For W ∈ G, πW must be uniformly coarsely Lipschitz and

have uniformly quasi-convex image.

Ax. 9: (Uniqueness.) For every K ≥ 0, there exists K ′ ≥ 0 such that if u, v ∈ X

such that dW (u, v) ≤ K for all W ∈ G, then d(u, v) ≤ K ′.

The rank ν of a hierarchically hyperbolic space (X,G) is the largest cardinality

of a collection of pairwise orthogonal elements {Uj} in G for which πUj
(X) is un-

bounded; if (X,G) is asymphoric, then there exists C ≥ 0 such that ν is likewise

the maximum cardinality of a pairwise orthogonal set for which diam CUj > C. δ-

hyperbolic spaces are hierarchically hyperbolic with respect to a trivial (hence rank
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at most 1) hierarchical structure; conversely, any rank 1 hierarchically hyperbolic

space is δ-hyperbolic if it is also asymphoric [BHS21, Cor. 2.15].

For A an admissible multiarc and curve graph and a witness W , the action of

PMod(Σ) implies πW (A) is either unbounded or CW is diameter at most 2, if W

is disconnected. Hence Theorem 1.3 implies that admissible multiarc and curve

graphs are asymphoric hyperbolically hierarchical spaces, and the above and that

orthogonality is equivalent to disjointness implies that Conjecture 1.6 holds.

Let dW (a, b) := diamCW (πW (a) ∪ πW (b)). As with MC(Σ), hierarchically hy-

perbolic spaces have a distance formula [BHS19, Thm. 4.5]:

Theorem 1.12 (Behrstock-Hagen-Sisto). Let (X,G) be hierarchically hyperbolic.

Then there exists C ′ such that for any C > C ′, there exist K,E ≥ 0 such that

d(a, b)
K,E
=

∑
W∈G

[dW (a, b)]C .

Conjecture 1.7 follows in the admissible case from Theorem 1.12 and Theorem 1.3.

//

2. Hierarchical hyperbolicity of partial marking graphs

We begin with a minor generalization of the complete, clean markings defined

in [MM00].

Definition 2.1. A marking µ = {(ai, ti)} on Σ is an essential simple multicurve

{ai}, denoted baseµ, along with a collection of (possibly empty) diameter 1 sub-

sets ti ⊂ C(ai), denoted transµ; for ai ∈ baseµ, let trans(µ, ai) = ti denote the

associated transversal.

We say b is a clean transverse curve for a curve a if the subsurface F filled by a∪ b
has complexity ξ = 1 and a, b are adjacent in CF .

Definition 2.2. A marking µ is locally complete if whenever ti ̸= ∅ then the

complementary component of baseµ \ {ai} containing ai has complexity ξ = 1; if

in addition ti ̸= ∅ implies ti = πai
bi for some clean transverse curve bi intersecting

baseµ only in ai, then µ is (locally) clean.

Remark 2.3. A locally clean marking is exactly one whose restriction to the maximal

subsurface intersecting only components with non-empty transversals is a complete,

clean marking on that subsurface, in the original sense of [MM00]. When we say a

marking is clean, we will always mean locally clean.

Just as with complete markings, given a locally complete marking µ, a locally

clean marking µ′ is compatible with µ if baseµ = baseµ′ and, for all a ∈ baseµ,

trans(µ′, a) = ∅ if and only if trans(µ, a) = ∅ and da(trans(µ, a), trans(µ
′, a)) is

minimal among all possible choices of transversal. We have the following from

Remark 2.3 and [MM00, Lem. 2.4]:

Lemma 2.4. For any locally complete marking µ, there exist at least one and

at most 4b compatible clean markings µ′, where b is the number of components

in µ with non-empty transversal. Furthermore, for any such µ′ and a ∈ baseµ,

da(trans(µ, a), trans(µ
′, a)) ≤ 3. □
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Definition 2.5. Let µ = {(aj , tj)}, ν = {(bk, sk)} be two markings on Σ. Then

their geometric intersection number i(µ, ν) is defined as follows:

i(µ, ν) := i(baseµ,base ν)

+
∑
j

diamC(aj)

[
πaj

(base ν) ∪ tj
]
+
∑
k

diamC(bk) [πbk(baseµ) ∪ sk]

+
∑

aj=bk

diamC(aj)(tj ∪ sk)

Definition 2.6. A partial marking graph M on Σ is a simplicial graph whose

vertices are clean markings. If in addition

(i) M is connected;

(ii) has a natural PMod(Σ) action; and

(iii) there exists L ≥ 0 such that (µ, ν) ∈ E(M) only if i(µ, ν) ≤ L,

then M is admissible.

We note that admissible multicurve graphs are likewise admissible partial mark-

ing graphs; we need only endow each multicurve with empty transversals. The 1-

skeleton of the marking complexMC(Σ) in [MM00] is an admissible partial marking

graph: its vertex set consists of complete clean markings.

Definition 2.7. Let M be a partial marking graph on Σ. An essential subsurface

W ⊂ Σ is a witness for M ifW ̸∼= Σ3
0 and for every marking µ ∈ V (M) either (i)W

intersects baseµ or (ii) W has an annular component whose core is a component in

baseµ with non-empty transversal.

Subsurface projection extends to markings, as defined in [MM00]:

Definition 2.8 (Subsurface projection). Let M be a partial marking graph on Σ,

and let S ⊂ Σ be a connected essential subsurface. We define πS : M → 2CS as

follows: for µ ∈ V (M), if S is an annulus with core α ∈ baseµ, then πS(µ) :=

trans(µ, α). Otherwise, πS(µ) := πS(baseµ) is the usual multicurve subsurface

projection. For S the disjoint union of connected essential subsurfaces Sj , let

πS(µ) :=
⋃

j πSj
(µ) ⊂ CS.

Remark 2.9. We note that πW (µ) ̸= ∅ for all µ ∈ V (M) if and only if W is a

witness for M. diamCW (πW (µ)) ≤ 2 by e.g. [MM00, Lem. 2.3]. For convenience,

we shall denote dW (µ, ν) := diamCW (πW (µ) ∪ πW (ν)).

Theorem 2.10. Let M be an admissible partial marking graph, and let X denote

its collection of witnesses. Then (M,X ) is a hierarchically hyperbolic space with

respect to subsurface projection to witness curve graphs CW , W ∈ X .

We follow the strategy in [Vok22], extending as necessary to our setting. We

first show that the quasi-isometry type of an admissible partial marking graph M
is fully determined by its set of witnesses X ; in particular, there exists a canonical

“maximal” representative M q.i.−−→ LX , which we then conclude to have the desired

hierarchically hyperbolic structure.
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2.1. A universal partial marking graph. We establish a bijection between the

coarsely PMod(Σ)-equivariant quasi-isometry types of admissible partial marking

graphs on Σ and certain collections of connected essential subsurfaces of Σ.

Definition 2.11. A set X of essential, non-pants subsurfaces of Σ is an admissible

witness set for Σ if it is closed under enlargement and the action of PMod(Σ). Let

the connected witness set X̂ ⊂ X denote the connected subsurfaces in X .

The collection of witnesses for an admissible partial marking graph M is an

admissible witness set, denoted X M. More generally, any collection of essential

subsurfaces may be closed to a admissible witness set.

Theorem 2.12. The map M 7→ X M induces a bijection Ψ : [M] 7→ X̂ M between

coarsely PMod(Σ)-equivariant quasi-isometry types of admissible partial marking

graphs and admissible connected witness sets.

That the map Ψ is well defined will follow from the fact that witness subsur-

face projections of admissible marking graphs are Lipschitz, as we will see in Sec-

tion 2.1.2. To show that Ψ is bijective, we construct an admissible partial mark-

ing graph LX̂ for any admissible witness set X such that (i) X̂ LX̂ = X̂ , and

(ii) for any admissible marking graph M satisfying X̂ M = X̂ , there is a coarsely

PMod(Σ)-equivariant quasi-isometry M → LX̂ M .

We extend the notion of an elementary move on a clean marking, as introduced

in [MM00]:

Definition 2.13. Let µ be a clean marking on Σ, and suppose a clean marking µ′

is obtained from µ by either

(i) a twist: replace some component (a, πab) ∈ µ with (a, πaτab), for τa a Dehn

twist or a half Dehn twist about a.

(ii) a flip: replace some component (a, πab) ∈ µ with (b, πba) and choose a clean

marking compatible with the result.

Then µ′ is obtained from µ by an elementary move. (We assume i(a, b) > 0.)

Remark. While not canonical in a strict sense, by Lemma 2.4 flip moves are unique

up to finitely many choices for fixed a, b, all uniformly close after projection to

witnesses.

Definition 2.14. Let X be an admissible witness set on Σ. Define LX to be the

simplicial graph whose vertices are all clean markings that meet every surface in

X , in the sense of Definition 2.7, and for which (µ, ν) ∈ E(LX ) if and only if µ is

obtained from ν by either

(i) adding or removing a component (a, t), or

(ii) adding or removing a transversal, or

(iii) an elementary move.

Let LX̂ be defined analogously, replacing X with X̂ .

Lemma 2.15. Let X be an admissible witness set. X LX = X and X̂ LX̂ = X̂ .
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Proof. X ⊂ X LX since by definition the vertices of LX meet every subsurface in

X , and likewise X̂ ⊂ X LX̂ hence X̂ ⊂ X̂ LX̂ . Conversely, suppose W ̸∈ X is

an essential, non-pants subsurface of Σ. X is closed under enlargement, hence W

contains no subsurfaces in X . Let µ be the clean marking on Σ obtained from any

complete, clean marking on Σ\W by adding distinct components in ∂W with empty

transversals. Then µ ∈ V (LX ) and does not meet W . W /∈ X LX . Likewise, if

W ̸∈ X̂ is an essential connected non-pants subsurface, then W ̸∈ X̂ LX̂ . □

It is clear that PMod(Σ) acts naturally on LX and LX̂ and that, in either

graph, two markings are adjacent only if their geometric intersection is less than

some uniform constant L. We prove below that LX and LX̂ are connected, hence

admissible. In addition, LX̂ is universal in the following sense: suppose that M
is an admissible marking graph such that X M ⊃ X̂ . Then every marking in M
meets every witness in X̂ , hence V (M) ⊂ V (LX̂ ) and is preserved by the action

PMod(Σ); we show below that this inclusion is Lipschitz, hence induces a PMod(Σ)-

equivariant coarse Lipschitz map ι̂ : M → LX̂ . An identical argument gives a

PMod(Σ)-equivariant coarse Lipschitz map ι : M → LX whenever X M ⊃ X ,

in which case ι̂ factors coarsely (exactly on vertices) as the composition of the

universal maps M → LX → LX̂ induced by the inclusions X M ⊃ X ⊃ X̂ .

We note that MC(Σ)(1) admits every essential, non-pants subsurface as a wit-

ness, hence X (MC(Σ)(1)) ⊃ X ⊃ X̂ . Since the edges of MC(Σ)(1) correspond to

elementary moves, ι may be taken to be a (simplicial) embedding and MC(Σ)(1) as
a connected PMod(Σ)-invariant full subgraph of LX , which is in turn a PMod(Σ)-

invariant full subgraph of LX̂ . Hence to show that LX and LX̂ are connected, it

suffices to prove that every marking lies in the same component as MC(Σ)(1), as
the following lemma shows:

Lemma 2.16. Any marking µ in V (LX ) or V (LX̂ ) may be completed to a com-

plete, clean marking µ′ through a sequence of length at most 2ξ(Σ)− |µ| of adding
components and transversals.

Proof. We note that we may always add components with empty transversal: since

µ is already locally complete, no new base curve intersects existing clean transverse

curves. Likewise, we may always add (clean) transversals to complete markings.

Add ξ(Σ)−|µ| components with empty transversal to obtain the complete marking

µ′′. For at most ξ(Σ) components with empty transversal in µ′′, add transversals

to obtain a complete, clean marking µ′ ∈ MC(Σ)(1). □

2.1.1. The quasi-isometry. We restate the arguments in [Vok22], with a substantial

adapatation of the proof of the existence of a quasi-retraction for our setting. Let

M be an admissible partial marking graph on Σ with witness set X , and let

ι̂ : M → LX̂ be the universal coarse map from above. We show that ι̂ is a quasi-

isometry.

We will use a key feature of admissibility, namely the existence of an upper

bound on distance in terms of geometric intesection number:

Lemma 2.17. Any admissible partial marking graph M admits a monotonic func-

tion fM : N → N such that for all µ, ν ∈ V (M), d(µ, ν) ≤ fM(i(µ, ν)).
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In fact, Lemma 2.17 follows only from connectivity and the natural action of a finite

index subgroup H ≤ Mod(Σ): for any M ≥ 0, Mod(Σ) acts cofinitely on the set

of pairs of clean markings with geometric intesection less than M . However, given

that (µ, ν) ∈ E(M) only if i(µ, ν) ≤ L, it is immediate that ι̂ is fL(X̂ )(L)-Lipschitz;

we remark that this argument implies that the universal maps ι̂ : M → LX̂ and

ι : M → LX are always Lipshitz, even if X M ⊋ X .

Coarse surjectivity likewise results from Lemma 2.17 and the following:

Lemma 2.18. There exists M ≥ 0 such that for any µ ∈ V (LX̂ ), there exists

ν ∈ V (M) such that i(µ, ν) ≤M .

Remark 2.19. Lemma 2.18 is a special case of following general fact: for any G-

invariant function s : A×B → N on cofinite G-sets A,B, minb∈B s(a, b) is uniformly

bounded for a ∈ A. In fact, it follows that for any cofinite G-set A, there exists

C ≥ 0 such that for any a, a′ ∈ A, there exists g ∈ G such that s(a, ga′) ≤ C: let C

be the maximum of the bounds obtained for B ∈ A/G. We will use this fact below.

Finally, we construct a coarse Lipschitz retraction ρ : µ 7→ Eµ, where Eµ = {ν ∈
V (M) : i(µ, ν) ≤M} and M is the constant in Lemma 2.18. By Lemma 2.17, it is

clear that ι̂ρ is coarsely identity. Moreover, we note that PMod(Σ) acts cofinitely

on pairs of adjacent vertices (µ, µ′) ∈ E(LX̂ ) since i(µ, µ′) < L, and that ρ is

PMod(Σ)-equivariant, hence dM(Eµ, Eµ′) is uniformly bounded. It remains only

to check the following:

Lemma 2.20. diamM(Eµ) is uniformly bounded.

We must first build some machinery. Let K ⊂ Σ be an essential, non-peripheral,

and possibly disconnected subsurface. Given ω a clean marking on Σ, fix a repre-

sentative in minimal position with ∂K and let ω|K := (σ, α), where σ ⊂ ω is the

submarking comprised of components whose representative curve is fully contained

in K, and α is an arc system obtained from the remaining components by taking

the intersection of their representative curves with K. We regard ω|K up to iso-

topy, rel ∂K. Let iK(ω|K , ω′|K) := i(σ, σ′) + i(α, σ′) + i(σ, α′) + i(α, α′), where

ω|K = (σ, α) and ω′|K = (σ′, α′) and the geometric intersection number between

arc systems and markings is defined as follows:

i(ν, α) := i(base ν, α) +
∑

(a,t)∈ν

diamC(a)(t ∪ πaα)

We emphasize that ω|K is well defined only up to choice of representative iso-

topic rel ∂K, which we assume to be fixed for given ω unless otherwise specified.

Mod(K, ∂K) acts on the set of pairs ω|K and preserves iK .

Remark. Here our notation differs with that of [MM00], where ω|K instead denotes

the restriction of ω to K.

Claim 2.21. There exists D ≥ 0 such that for any ω|K , ω′|K with i(ω, ∂K), i(ω′, ∂K)

at most M , there exists ϕ ∈ Mod(K, ∂K) for which iK(ϕω|K , ω′|K) ≤ D.

Proof. Let S be the set of equivalence classes of pairs η|K for some choice of

representative of η ∈ V (M) with i(η, ∂K) ≤M , up to (endpoint free) isotopy and
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ignoring transversals on components peripheral in K. PMod(K) acts cofinitely on

S and preserves

iK([η|K ], [η′|K ]) := min
ρ|K∈[η|K ],ρ′|K∈[η′|K ]

iK(ρ|K , ρ′|K)

hence likewise does Mod(K, ∂K) ↠ PMod(K). By Remark 2.19, there exists D′

independent of ω|K , ω′|K and ψ ∈ Mod(K, ∂K) such that iK([ψω|K ], [ω′|K ]) ≤ D′.

However, we observe that if [η|K ] = [η′|K ], then there exists D′′ depending only

on M and some boundary multitwist τ ∈ Mod(K, ∂K) such that iK(τη|K , γ|K) ≤
iK(η′|K , γ|K) +D′′ for all γ|K , whence the claim follows with D = D′ + 2D′′. □

Claim 2.22. Let η be a multicurve on Σ and Kl ⊂ Σ pairwise disjoint subsurfaces

partitioning Σ whose boundary curves lie in η. There exists C ≥ 0 such that, for

any markings ω, ω′ with i(ω, η), i(ω′, η) ≤M , i(ω, ω′) ≤
∑

l iKl
(ω|Kl

, ω′|Kl
) + C.

Proof. Let γ = {(aj , tj)}, γ′ = {(a′k, t′k)} be the maximal submarkings of ω, ω′

respectively whose base curves all intersect η. Then by our definition of iKl
, we

have that

i(ω, ω′) ≤
∑
l

iKl
(ω|Kl

, ω′|Kl
) +

∑
(aj ,tj)∈γ

diamC(aj)(tj ∪ πaj
(baseω′))

+
∑

(a′
k,t

′
k)∈γ′

diamC(a′
k)
(t′k ∪ πa′

k
(baseω))

+
∑

aj=a′
k

diamC(aj)(tj ∪ t
′
k) .

It suffices to show that the (at most 3ξ(Σ)) transversal terms are uniformly bounded.

Suppose (aj , tj) ∈ γ. aj intersects η, hence πajη ̸= ∅. Since i(ω, η), i(ω′, η) ≤ M ,

diamC(aj)(tj ∪πaj
η) ≤M and diamC(aj)(πaj

η∪πaj
(baseω′)) is uniformly bounded,

hence diamC(aj)(tj ∪πaj
(baseω′)) is uniformly bounded. Analogous arguments ap-

ply for (a′k, t
′
k) ∈ γ′ and when aj = a′k. □

Proof of Lemma 2.20. Fix a representative of µ and let N be an open regular neigh-

borhood, and let Kj denote the complementary components of N along with the

components of N . LetKj := Σ\K̊j . Fix representatives of ν, ν′ in minimal position

with ∂Kj for all j; since ν, ν′ ∈ Eµ, the number of arc components in ν ∩Kj and

ν′∩Kj is at most M , hence whenever Kj
∼= Σ3

0 we may assume that iKj
(ν|Kj

, ν′Kj
)

is uniformly bounded up to isotoping intersections into surrounding annuli. Let

ν0 = ν. For each Kj , we will construct νj ∈ V (M) such that νj is identical to νj−1

except in K̊j (hence i(νj ,baseµ) ≤M) and dM(νj , νj−1) and iKj
(νj |Kj

, ν′|Kj
) are

uniformly bounded. The lemma then follows from Claim 2.22.

We construct νj inductively: assume νj−1 exists and suppose that Kj ̸∈ X̂ ,

hence Kj ̸∈ X since Kj is connected. If Kj
∼= Σ3

0 then it suffices to let νj = νj−1.

Else, there exists ω ∈ V (M) disjoint from Kj . Applying Claim 2.21, up to trans-

lation by Mod(Kj , ∂Kj) we may assume that iKj (ω|Kj , νj−1|Kj ) ≤ D; likewise,

choose ϕ ∈ Mod(Kj , ∂Kj) such that iKj (ϕνj−1|Kj , ν
′|Kj ) ≤ D and, extending ϕ

by identity, let νj = ϕνj−1. Then iKj
(νj |Kj

, ν′|Kj
) ≤ D. ω is disjoint from Kj ,

hence ω|Kj
= ∅ and iKj

(νj−1|Kj
, ω|Kj

) = 0 and by Claim 2.22, i(νj−1, ω) ≤
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D + C. νj , νj−1 are identical outside of Kj , thus likewise i(νj , ω) ≤ D + C. Hence

dM(νj , νj−1) ≤ dM(νj , ω) + dM(ω, νj−1) ≤ 2fM(D + C).

If Kj ∈ X̂ , then Kj is an annulus; let aj ∈ baseµ be its core curve. Since

Kj is a witness, trans(µ, ak) ̸= ∅. i(µ, ν′), i(µ, νj−1) ≤ M then implies that

iKj (νj−1|Kj , ν
′|Kj ) is uniformly bounded. Let νj = νj−1. □

Remark. The universal map ι : M → LX is also a PMod(Σ)-equivariant quasi-

isometry. In particular, the universal map ι′ : LX → LX̂ is a PMod(Σ)-equivariant

quasi-isometry by the above and ι̂ : M → LX̂ factors through ι and ι′. //

2.1.2. Witness subsurface projections are Lipschitz. We consider πW : LX̂ → 2CW

forW ∈ X̂ ; the arguments for LX are identical. It suffices that for (µ, ν) ∈ E(LX̂ )

and W ∈ X̂ , dW (µ, ν) = diamCW (πW (µ) ∪ πW (ν)) is uniformly bounded. If µ, ν

differ by the addition of a component or a transversal, then without loss of generality

πW (µ) ⊂ πW (ν) and dW (µ, ν) = diamCW (πW (ν)) ≤ 2. Otherwise, µ, ν differ by

an elementary move. Since µ, ν are locally complete and clean, we may apply the

proof of Lemma 2.5 in [MM00]:

Proposition 2.23 (Masur-Minsky). Suppose µ, ν ∈ V (LX̂ ) and ν is obtained from

µ by an elementary move. Then for any W ∈ X̂ , dW (µ, ν) ≤ 4.

We may now prove that the map [M] 7→ X̂ M from Theorem 2.12 is well defined.

Let X̂ = X̂ M. Since V (M) ⊂ V (LX̂ ), the extension ι̂ : M → LX̂ preserves

subsurface projection; since ι̂ is a quasi-isometry, witness subsurface projections

πW : M → 2CW , W ∈ X̂ are likewise Lipschitz. Suppose that M,M′ have

distinct connected witness sets X̂ , X̂ ′ respectively, and let W ∈ X̂ ′ \ X̂ . Then

there exists ω ∈ V (M) disjoint from W . Since W is connected, we may choose

a loxodromic element φ ∈ Mod(W,∂W ) for CW , any extension of which acts on

M′ with non-zero translation length since πW : M′ → 2CW is Lipschitz. Let

φ̃ ∈ PMod(Σ) be an extension by identity. Then φ̃ fixes ω ∈ M, hence M,M′ are

not PMod(Σ)-equivariantly quasi-isometric. //

Remark. The above implies that MC(Σ)(1), while a 2ξ(Σ)-coarsely dense full sub-

complex of LX by Lemma 2.16, is in general significantly distorted.

2.2. Hierarchical structure of (LX ,X ). We endow LX with the usual hierar-

chical structure via witness subsurface projections {πW : LX → 2CW }W∈X and

the following relations on X :

• U ⊑ V if and only if U ⊂ V up to isotopy; and

• U ⊥ V if and only if U, V are disjoint up to isotopy.

Let U ⋔ V if neither of the above hold. For W ∈ X , πW is uniformly quasi-

convex: any curve (potentially adding transversal) may be completed to a marking

in V (LX ), thus πW is surjective if W is not an annulus; if W is an annulus with

core curve a, then any orbit of a Dehn twist about a projects to a 1-coarsely

dense subset of CW . Hence πW satisfies Axiom 1 by the above, Remark 2.9, and

Proposition 2.23.

If U ⊑ V , then let ρVU = πU : CV → 2CU , and if in addition U ̸= V , let

ρUV = ∂V U , the non-peripheral boundary of U in V . If U ⋔ V , let ρVU = πU (∂V ).



12 MULTIARC AND CURVE GRAPHS ARE HIERARCHICALLY HYPERBOLIC

Axioms 2 and 3 follow immediately from the definition of witness subsurfaces2 and

our choice of relations and associated projections, and Axioms 4 through 8 follow

from the fact that the same hold for MC(Σ)(1), which lies as a 2ξ(Σ)-coarsely dense

subcomplex of LX , and that the πW are uniformly Lipschitz. We verify Axiom 9

below.

Definition 2.24. Given an admissible witness set X , let the twist-free witness set

X̃ ⊂ X denote the admissible witness set with all annular witnesses removed.

Definition 2.25. If X is an admissible witness set without annuli, let KX denote

the full subgraph of LX spanned by markings with empty transversals, with addi-

tional edges (µ, ν) corresponding to twist-free flip moves: ν is obtained from µ by

replacing a component (a,∅) 7→ (b,∅) such that, if F is the subsurface filled by

a, b, then F is connected, ∂F ⊂ baseµ ∪ ∂Σ, and dCF (a, b) = 1.

Lemma 2.26. For any K ≥ 0, there exists K ′ ≥ 0 such that for any µ, ν ∈ LX ,

if dW (µ, ν) ≤ K for all W ∈ X , then dLX (µ, ν) ≤ K ′.

Proof. We regard KX̃ as a (twist-free) multicurve graph. For any multicurve m ∈
V (KX̃ ), there exists a clean marking µ ∈ V (LX ) such that baseµ = m. In

particular every non-annular witness in X intersects m, and if A is some annular

witness disjoint from m with core curve a, then a ∈ m and any complementary

component adjacent to a is a pair of pants. Hence we may choose a clean transverse

curve b for a disjoint from m \ {a}. Let µ consist of components (a, πab) for a ∈ m

if a is parallel to an annular witness, and (a,∅) otherwise.

By [Vok22, Prop. 3.6], there exists a path of multicurves P̃ ⊂ KX̃ between

baseµ,base ν of length ℓ at mostK ′′ = K ′′(K,X ). Let P̃ = (mj) withm1 = baseµ

and mℓ = base ν. Let P0 = (ωj) ∈ V (LX ) be a sequence of clean markings such

that ω1 = µ, ωℓ = ν, and baseωj = mj , where ωj ̸=1,ℓ is chosen as described above.

If dLX (ωj , ωj+1) is uniformly bounded indepedent of the path P̃ , then we conclude

by the triangle inequality. In fact, it suffices to control projections to annular

witnesses:

Claim 2.27. Let ω, ω′ ∈ V (LX ) such that (baseω,baseω′) ∈ E(KX̃ ), and let

D ≥ 0 such that dc(ω, ω
′) ≤ D for any c ∈ baseω ∪ baseω′ parallel to an annular

witness. Then dLX (ω, ω′) ≤ (D + 3)(ξ(Σ) + 1).

Proof of claim. Without loss of generality assume |ω| ≤ |ω′|, hence baseω′ is ob-

tained from baseω by either adding a component b or a twist-free flip a 7→ b. Let

ω′′ be obtained from ω by adding (b, trans(ω′, b)) or replacing (a, trans(ω, a)) with

(b, πba) and choosing a compatible clean marking, as appropriate. In the first case,

dLX (ω, ω′′) = 1, and if a is not parallel to an annular witness, then in the second

case dLX (ω, ω′′) ≤ 3: remove and replace the transversal for a with πab, then flip.

Otherwise, a is a witness curve and at most da(ω, ω
′) ≤ D twist moves along a

suffice to replace trans(ω, a) with πab, hence dLX (ω, ω′′) ≤ D + 1.

2We remark that Axiom 3 may require disconnected witnesses. Thus (LX̂ , X̂ ) may not be

hierarchically hyperbolic, despite that the quasi-isometry ι̂ : LX → LX̂ preserves projections

over X̂ .
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We show that dLX (ω′′, ω′) ≤ (D+3)|ω′′| and conclude. baseω′′ = baseω′, hence

to obtain ω′ we need only modify transversals in ω′′ to agree with those in ω′. Let

c ∈ baseω′′. As above, at most 2 moves suffice if c is not a witness curve and

dc(ω
′′, ω′) otherwise; by Lemma 2.4, dc(ω

′′, ω′) ≤ dc(ω, ω
′) + 3 ≤ D + 3. □

Let P = (ωj) be a sequence of markings in LX of length ℓ ≤ K ′′ such that

ω1 = µ, ωℓ = ν, (baseωj) is a path in KX̃ , and P is minimal in the following sense:

P has the fewest number of pairs (j, a) for which 1 ≤ j < ℓ, a ∈ baseωj ∪baseωj+1

is parallel to an annular witness, and da(ωj , ωj+1) > K + c0K
′′ + 2, where c0 is a

universal constant defined below. P exists by the existence of P0. We show that if

P has such a pair (j, a) then there exists a more minimal sequence P ′, and conclude

by contradiction and the above. Fix a in such a pair. Let mj = baseωj . If a /∈
mj∪mj+1, then da(ωj , ωj+1) ≤ 4 (see e.g. the proof of [MM00, Lem. 2.5]). For each

j < ℓ for which a ∈ mj ∪mj+1, choose σj ∈ Z such that da(ωj , τ
σj
a ωj+1) ≤ 1, where

τa is a Dehn twist about a; let J < ℓ be the last such index. Set σj = 0 otherwise.

C(a) is Z-equivariantly (1, 1)-quasi-isometric to Z and da(µ, ν) = da(ω1, ωℓ) ≤ K,

hence there exists a universal constant c0 > 4 such that

(1)

∣∣∣∣∣∣
J∑

j=1

σj

∣∣∣∣∣∣ ≤ K + c0(ℓ− 1) + 1 ≤ K + c0K
′′ .

Let ρj =
∑j−1

k=1 σk and let P ′ = (ω′
j), where ω

′
j = τ

ρj
a ωj for j ≤ J , and ω′

j = ωj

otherwise; let m′
j = baseω′

j . We first verify that (m′
j) is a path in KX̃ . Since KX̃

is preserved by τa, for j < J it suffices that (mj , τ
σj
a mj+1) is an edge in KX̃ . For

σj = 0, this is immediate. Else a ∈ mj ∪mj+1. If a ∈ mj+1 then τ
σj
a mj+1 = mj+1,

and otherwise a ∈ mj and mj+1 is obtained by a twist-free flip a 7→ b: we observe

that τ
σj
a b intersects a minimally in the surface filled by a, b. For j = J , it suffices

that (mJ , τ
−ρJ
a mJ+1) is an edge in KX̃ : since a ∈ mJ ∪mJ+1 by assumption, an

identical argument applies.

We show that P ′ has strictly fewer pairs (j, a′) with a′ ∈ m′
j ∪m′

j+1 a witness

curve such that da′(ω′
j , ω

′
j+1) > K + c0K

′′ + 2.

Claim 2.28. Let ω, ω′ be clean markings whose respective base multicurves m,m′

differ by adding a component or a (twist-free) flip. Let a ∈ m ∪m′ and a′′ ∈ m be

distinct. Then da′′(ω, τ qaω
′) = da′′(ω, ω′) for q ∈ N.

Proof of claim. If a′′ ∈ m∩m′, then πa′′(ω) = trans(ω, a′′) and πa′′(ω′) = trans(ω′, a′′),

projections of clean transverse curves b, c respectively. Since a ∈ m∪m′, a∩a′′ = ∅
and at most one of b, c intersects a, hence τa lifts to an action on C(a′′) that fixes
either πa′′(ω) or πa′′(ω′): we obtain da′′(ω, τ qaω

′) = da′′(τ qaω, τ
q
aω

′) = da′′(ω, ω′). If

instead a′′ ∈ m \m′, then a ∈ m′, since otherwise two distinct curves lie in m \m′

and m,m′ do not differ by adding a component or a flip. Then πa′′(ω′) = πa′′(m′)

is preserved by τa and likewise da′′(ω, τ qaω
′) = da′′(ω, ω′). □

Observe that the maps a′ ∈ m′
j 7→ τ

−ρj
a a′ and a′ ∈ m′

j+1 7→ τ
−ρj+1
a a′ induce a

bijection from m′
j ∪m′

j+1 to mj ∪mj+1 preserving witness curves. We first assume

that j < J , and suppose that a′ ∈ m′
j is a witness curve. Let a′′ = τ

−ρj
a a′ ∈ mj .
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As above, by translating by τ
−ρj
a we observe that da′(ω′

j , ω
′
j+1) = da′′(ωj , τ

σj
a ωj+1).

If σj = 0 then da′′(ωj , τ
σj
a ωj+1) = da′′(ωj , ωj+1). Suppose σj ̸= 0 and thus a ∈

mj ∪ mj+1. For a ̸= a′′, Claim 2.28 implies that likewise da′′(ωj , τ
σj
a ωj+1) =

da′′(ωj , ωj+1). An analogous argument applies if a′ ∈ m′
j+1, replacing a′′ with

τ
−ρj+1
a a′ ∈ mj+1 and translating by τ

−ρj+1
a . Finally if a′′ = a then a′ = a, thus by

our choice of σj da′(ωj , τ
σj
a ωj+1) ≤ 1 ≤ K + c0K

′′ + 2.

Let j = J . Then a ∈ mJ ∪ mJ+1 by our choice of J . We apply the argu-

ments above: if a′ ∈ m′
J , then let a′′ = τ−ρJ

a a′ ∈ mJ and translate by τ−ρJ
a ,

else if a′ ∈ m′
J+1 = mJ+1, then let a′′ = a′. Hence if a′′ ̸= a, da′(ω′

J , ω
′
J+1) =

da′′(ωJ , ωJ+1). If a
′′ = a then a′ = a; observe that by (1), |ρJ+1| ≤ K+c0K

′′, hence

da(ωJ+1, τ
ρJ+1
a ωJ+1) ≤ K+c0K

′′+1. But da(ω
′
J , τ

ρJ+1
a ωJ+1) = da(ωJ , τ

σJ
a ωJ+1) ≤

1, hence da′(ω′
J , ω

′
J+1) ≤ K + c0K

′′ + 2. □

Hence (LX ,X ) is a hierarchically hyperbolic space with respect to witness sub-

surface projections. However, if (X,G) is a hierarchically hyperbolic space and

ψ : X ′ → X is a quasi-isometry, then (X ′,G) is likewise a hierarchically hyperbolic

space by precomposing projections with ψ (this is remarked in e.g. [BHS17, §1.1.4]).
Thus by Section 2.1, Theorem 2.10 follows: for anyM for which X M = X , the uni-

versal quasi-isometry ι : M → LX preserves subsurface projection, hence (M,X )

is a hierarchically hyperbolic space with respect to the projections πW ◦ ι = πW ,

W ∈ X . //

3. Hierarchical hyperbolicity of multiarc and curve graphs

For an admissible multiarc and curve graph A on Σ, we construct an admissible

partial marking graph MA on Σ with an identical witness set and a PMod(Σ)-

equivariant coarse quasi-isometry ζ : A → MA that coarsely preserves witness

subsurface projection. Then by Theorem 2.10, Theorem 1.3 follows immediately.

3.1. Constructing the associated marking graph. Given an arc and curve

system α, we construct a set of corresponding clean markings µα as follows. Let αj

denote the connected components of α, i.e. maximal subsystems such that αj ∪ ∂Σ
has a single connected component that is not a boundary. Then αj is either: (i) an

arc or curve aj , or (ii) a multiarc {aj,k}
Lj

k=1. In the former case, let baseµj = ∂Σ(a),

the collection of distinct essential, non-peripheral boundary components of a regular

neighborhood of a ∪ ∂Σ, and give each component an empty transversal. In the

latter, let baseµj =
⋃

k ∂Σ(
⋃k

s=1 aj,s) and to each component c add the transversal

πc(αj). Let Fj be the subsurface filled by αj . Then baseµj\∂Fj ⊂ Fj , ∂Fj∩baseµj

has empty transversals, and µj \∂Fj is a complete marking on Fj :
⋃

j µj is a locally

complete marking. Let µα be the (finite) collection of all clean markings compatible

with
⋃

j µj , for every choice of orderings of the aj,k.

We define the vertices of MA to be

V (MA) =
⋃

α∈V (A)

µα .

Let (µ, ν) ∈ E(MA) if and only if µ ∈ µα and ν ∈ µβ for (α, β) ∈ E(A). Fi-

nally, define ζ : V (A) → V (MA) to be the coarse map α 7→ µα, where we observe
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diam(ζ(α)) ≤ 2 since A is connected and not a singleton: for β adjacent to α in A,

any µ, µ′ ∈ ζ(α) are adjacent to µβ in MA. By our definitions, ζ is coarsely Lips-

chitz, surjective, and since µα is canonical, PMod(Σ)-equivariant; MA is likewise

preserved under the action of PMod(Σ) and connected. LetW ⊂ Σ be an essential,

non-pants subsurface. For α =
⋃

j αj and µ =
⋃

j µj ∈ µα as above, αj is filling

and µj \ ∂Fj is complete on Fj , and µj ∩ ∂Fj has empty transversals. Hence W

intersects µ if and only if it intersects some Fj if and only if it intersects α: the

witness set for MA is identical to that of A. Finally, by construction ζ coarsely

preserves subsurface projection to annular witnesses; for non-annular witnesses, α

and µ ∈ µα have uniformly bounded intersection hence coarsely equal projection.

3.2. Counting intersections. It remains to show that if µ, µ′ are adjacent in MA
then i(µ, µ′) is uniformly bounded, hence MA is admissible, and that there exists

a Lipschitz coarse retraction for ζ. If µ, µ′ are adjacent then there exists α, α′

adjacent in A such that µ ∈ µα and µ′ ∈ µα′ . Since the components of µ, µ′ are

parallel to boundaries and the components of α, α′ respectively, i(baseµ,baseµ′) ≤
4|µ||µ′|i(α, α′) + 4|µ||µ′|(|α| + |α′|) ≤ 4ξ(Σ)2(i(α, α′) + 2 dimA(Σ)). Likewise, for

c ∈ baseµ, dc(µ, µ
′) is uniformly bounded in terms of i(α, α′), and likewise for

c′ ∈ baseµ′: since i(α, α′) is uniformly bounded, so is i(µ, µ′).

For µ ∈ V (MA), let Eµ = {α ∈ V (A) : µ ∈ µα}. By an argument identical

to that in Section 2.1, ρ : µ 7→ Eµ is a Lipschitz coarse retraction for ζ if Eµ has

uniformly bounded diameter. As usual, it suffices to show that there exists D ≥ 0

such that for any µ ∈ V (MA) and α, α
′ ∈ Eµ, i(α, α

′) ≤ D. We verify that for any

component a ∈ α and a′ ∈ α′, i(a, a′) is bounded uniformly in terms of ξ(Σ). If

a, a′ are both curves, then by construction a, a′ ∈ baseµ and hence either disjoint

or identical. If a is an arc and a′ a curve, then a intersects a′ at most twice. More

generally, for any arc a ∈ α, a is contained in a subsurface F for which µ|F is a

complete marking on F and a\µ has at most two components in each component of

F \µ. Up to Dehn twists along components in baseµ, a is thus one of finitely many

arcs, any two of which have at most 8 intersections in each component of F \µ. The
order of each twist is determined up to a uniform constant by the transversals in

µ. It follows that any two such arcs have uniformly bounded intersection number,

depending only on ξ(F ) ≤ ξ(Σ). Finally, if a, a′ are both arcs then choose F to

contain both, whence i(a, a′) is uniformly bounded. ζ is a quasi-isometry. //
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