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Abstract. Let S be an infinite-type surface and let G ≤ Map(S) be a locally

bounded Polish subgroup. We construct a metric graph M of simple arcs

and curves on S preserved by the action of G and for which the vertex orbit

map G → V (M) is a coarse equivalence; if G is boundedly generated, then

M is a Cayley–Abels–Rosendal graph for G and the orbit map is a quasi-

isometry. In particular, if S contains a non-displaceable subsurface and G ≥
PMapc(S) is boundedly generated or G ∈ {PMapc(S),PMap(S),Map(S)} and

is locally bounded, then asdimM = asdimG = ∞. This result completes

the classification of the asymptotic dimension of stable boundedly generated

infinite-type surface mapping class groups begun by Grant–Rafi–Verberne.

1. Introduction and main results

Let S be a surface of infinte topological type. A (metric) arc and curve model

for G ≤ Map(S) is a connected (metric) graph whose vertices are collections of

(possibly intersecting) simple arcs and curves on S, with an isometric action of G

induced by the permutation of its vertices.

Theorem 1.1. Let S be an infinite-type surface and let G ≤ Map(S) be a locally

bounded Polish subgroup.

(1) There exists a metric arc and curve model M for G for which the orbit map

restricted to V (M) is a continuous coarse equivalence.

(2) If additionally G is boundedly generated, then M is a Cayley–Abels–Rosendal

graph for G and the orbit map is a continuous quasi-isometry.

In particular, the coarse equivalence and quasi-isometry types of G ≤ Map(S)

are described by a (metric) arc and curve model, whenever they are well-defined.

A compact subsurface ∆ ⊂ S is non-displaceable by G if there exists no f ∈ G ≤
Map(S) such that ∆ ∩ f∆ = ∅. From Theorem 1.1 we obtain:

Theorem 1.2. Let S be an infinite-type surface and G ≤ Map(S) a Polish sub-

group with a non-displaceable subsurface and containing PMapc(S). If G is bound-

edly generated or G ∈ {PMapc(S),PMap(S),Map(S)} and locally bounded, then

asdimG = ∞.

Theorem 1.2 answers [GRV21, Qn. 1.8] of Grant–Rafi–Verberne and completes

their characterization of the asymptotic dimension of stable boundedly generated

infinite-type surface mapping class groups.
1
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Corollary 1.3. For stable S with boundedly generated Map(S), asdimMap(S) = ∞
if and only if S has a non-displaceable subsurface or an essential shift; otherwise,

Map(S) is coarsely bounded and asdimMap(S) = 0.

To our knowledge, our construction obtains the first examples of an arc and curve

model admitting a geometric (Švarc–Milnor-type) action of the mapping class group

of an arbitrary infinite-type surface; see [SC24] for a construction of curve graphs

for translateable surfaces.

1.1. Outline. In Section 2, we state some known results about the asymptotic di-

mension of mapping class groups of infinite-type surfaces, specifically from [GRV21],

following which we introduce some background and relevant tools for the coarse

geometry of Polish groups from [Ros21] and [BDHL25]. In Section 3, we describe

witness-cocompactness, a key tool for computing asymptotic dimension, and sketch

the main theorem in [Kop24]:

Theorem 1.4. Let S be an infinite-type surface and let M be a witness-cocompact

arc and curve model for PMapc(S). Then asdimM = ∞.

In Section 4, we introduce coarse Cayley–Abels–Rosendal graphs, which extend the

Cayley–Abels–Rosendal graphs of [BDHL25] for locally bounded Polish groups; in

particular, we prove a Švarc–Milnor-type result (Proposition 4.4). Section 5 con-

structs the modelM satisfying Theorem 1.1. Finally, Section 6 proves Theorem 1.2.

1.2. Acknowledgements. The authors would like to thank Thomas Hill for ac-

quainting them with Cayley–Abels–Rosendal graphs and Robbie Lyman, George

Domat and Brian Udall for helpful discussions. Additionally, the authors thank

Mladen Bestvina and Priyam Patel for their suggestion to generalize the work to

the locally bounded case. This work was supported by NSF grant no. 2304774 and

no. 1840190: RTG: Algebra, Geometry, and Topology at the University of Utah.

2. Preliminaries

We first review Rosendal’s work on Polish topological groups and introduce the

necessary background on coarse structures from [Ros21]. We then recall Cayley–

Abels–Rosendal graphs for topological groups [BDHL25] and several facts on the

topology of boundedly generated mapping class groups. Lastly, we summarize the

relevant results from [GRV21].

2.1. Coarse structure. The Polish groups considered herein are typically not

finitely or compactly generated. Nonetheless, following Rosendal we may associate

to every topological group G a canonical left-invariant coarse structure, which gen-

eralizes the (quasi)geometric structure classically associated to a group. This coarse

structure will permit a well-defined coarse equivalence and quasi-isometry type for

locally bounded and boundedly generated Polish groups, respectively (Section 2.2).

Definition 2.1 ([Ros21, Defn. 2.2]). A coarse structure on a set X is a collection

E of subsets E ⊆ X ×X satisfying the following:

• The diagonal {(x, x) | x ∈ X} is in E .
• If F ∈ E and E ⊆ F , then E ∈ E
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• if E,F ∈ E , then E ∪ F,E−1, E ◦ F ∈ E , where E−1 = {(y, x) | (x, y) ∈ E}
and E ◦ F := {(x, z) | ∃y ∈ X, (x, y) ∈ F, (y, z) ∈ E}.

Example 2.2 ([Ros21, Example 2.3]). The simplest examples of coarse structures

arise from pseudometrics on a set X: Given a pseudometric d on X, we may define

the coarse structure induced by d as follows:

Ed := {E ⊂ X ×X | E ⊆ Eα for some α <∞}
where Eα := {(x, y) | d(x, y) < α}.

Definition 2.3 ([Ros21, Defn. 2.12]). A subset A ⊆ X of a coarse space (X, E) is
said to be coarsely bounded if A×A ∈ E .

A topological group has a canonical left-invariant coarse structure:

Definition 2.4 ([Ros21, Defn. 2.10]). For a topological group G, the left-coarse

structure EL is defined by

EL :=
⋂

{Ed | d is a continuous, left-invariant pseudometric on G} .

For a topological group G with its left-coarse structure EL, we denote by CB the

collection of all coarsely bounded subsets of G. This collection is actually an ideal

of sets additionally closed under the operations of topological closure, inversion and

products.

Definition 2.5 ([Ros21, Defn. 2.10]). Given an ideal A, we can define the coarse

structure EA on the group G as follows:

EA := {E | E ⊆ EA for some A ∈ A}
where EA := {(x, y) ∈ G×G | x−1y ∈ A}.

In particular, we can consider the coarse structure ECB on G, associated to the

ideal CB of coarsely bounded subsets of G.

Lemma 2.6 ([Ros21, Cor. 2.23]). For any topological group G, EL = ECB.

Henceforth, we will always endow a topological group with the left coarse structure

EL = ECB and a pseudometric space (X, d) with the coarse structure Ed.

Definition 2.7 ([Ros21, Defn. 2.43]). Let (X, E) and (Y,F) be coarse spaces.

• A map φ : X → Y is said to be bornologous if (φ× φ)(E) ⊆ F
• A map φ : X → Y is said to be expanding if (φ× φ)−1(F) ⊆ E
• A map φ : X → Y is said to be a coarse embedding if it is both bornologous

and expanding.

• Let Z be a set. Two maps α, β : Z → X are said to be close if there exists

E ∈ E such that (α(z), β(z)) ∈ E for all z ∈ Z.

• A bornologous map φ : X → Y is said to be a coarse equivalence if there

exists a bornologous map ψ : Y → X such that ψ ◦ φ is close to IdX and

φ ◦ ψ is close to IdY .

• A subset A ⊆ X is said to be cobounded if there exists E ∈ E such that

X = E[A] := {x ∈ X | (x, y) ∈ E for some y ∈ A}
• A map φ : X → Y is cobounded if φ(X) is cobounded in Y.
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Remark 2.8. The terms in Definition 2.7 agree with their usual (metric) definitions

when E and F are metrizable i.e. E = Ed and F = Ed′ for metrics d, d′ on X,Y

respectively.

Lemma 2.9 ([Ros21, Lem. 2.45]). Any cobounded coarse embedding is a coarse

equivalence.

Lemma 2.10. Suppose that a topological group G acts continuously and isometri-

cally on a metric space (X, d). Then the orbit map ω is bornologous.

Proof. Since the action is continuous and isometric, the pullback metric ω∗d is a

left-invariant continuous pseudometric on G and (ω × ω)[Eω∗d] ⊂ Ed. By definition

EL ⊂ Eω∗d, hence ω is bornologous. □

Let Bα(x) denote the ball of radius α > 0 centered at x.

Lemma 2.11. Suppose that a topological group G acts continuously and isometri-

cally on a metric space (X, d) and let ω be the orbit map based at x0 ∈ X. Then ω

is expanding if Aα := ω−1(Bα(x0)) is coarsely bounded for all α > 0.

Proof. The orbit map ω is expanding if and only if (ω × ω)−1(Ed) ⊆ EL. First

consider Eα ∈ Ed for α > 0. Then

(ω × ω)−1(Eα) = {(g, h) ∈ G×G | (gx0, hx0) ∈ Eα}
= {(g, h) ∈ G×G | d(gx0, hx0)) < α}
= {(g, h) ∈ G×G | d(x0, g−1hx0)) < α}
= {(g, h) ∈ G×G | g−1h ∈ Aα}
= EAα

Since Aα is coarsely bounded, EAα ∈ ECB = EL by Lemma 2.6. For general

E ∈ Ed, E ⊂ Eα for some α > 0. Hence (ω × ω)−1(E) ⊂ (ω × ω)−1(Eα) ∈ EL and

(ω × ω)−1(E) ∈ EL as required. □

We conclude by stating a convenient criterion for coarse boundedness:

Proposition 2.12 ([Ros21, Prop. 2.15(5)]). Let G be a Polish group. A subset

A ⊂ G is coarsely bounded if and only if for every identity neighborhood U ⊂ G,

there exists a finite set F and n ∈ N such that A ⊂ (FU)n.

Corollary 2.13. Let G be a Polish group and H ≤ G be coarsely bounded in G. If

H ≤ H ′ ≤ G such that [H : H ′] <∞ then H ′ is also coarsely bounded in G.

Proof. Since H is coarsely bounded, for every open neighborhood 1 ∈ U ⊂ G, there

exists a finite set F and n ∈ N such that H ⊂ (FU)n. If H ′ =
⋃k
i=1 hiH, let

F ′ := F ∪ {h1, . . . hk}. Clearly H ′ ⊂ (F ′U)n and hence H ′ is coarsely bounded in

G. □

2.2. Local boundedness and bounded generation. Analogously to locally

compact and compactly generated groups, we introduce two classes of topologi-

cal groups related to the metrizability of EL.

Definition 2.14. A topological group G is

(i) locally bounded if there is a coarsely bounded neighborhood of identity.
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(ii) boundedly generated if it admits a coarsely bounded generating set.

Proposition 2.15 ([Ros21, Thm. 2.40]). Any boundedly generated Polish group is

locally bounded.

Remark 2.16. The properties of local boundedness and bounded generation are

not inherited by Polish subgroups. For example, consider the ladder surface S.

Then Map(S) is boundedly generated and hence locally bounded as well [MR23]

but PMap(S) is neither locally bounded nor boundedly generated [Hil25].

Proposition 2.17 ([Ros21, Cor. 3.26]). Among Polish groups, the properties of be-

ing locally bounded and boundedly generated are both invariant under coarse equiv-

alence. Moreover, every coarse equivalence between boundedly generated Polish

groups is automatically a quasi-isometry.

We recall that EL is metrizable when it is induced by a (possibly discontinuous)

metric on G, in which case EL defines a coarse-equivalence type for G in the usual

(metric) sense. Crucially:

Theorem 2.18 ([Ros21, Thm. 2.38]). Let G be a Polish group. Then EL is metriz-

able if and only if G is locally bounded if and only if EL is induced by a continuous

left-invariant pseudometric d on G.

When EL is metrizable, by definition, it is maximal among the set of coarse

structures on G induced by continuous left-invariant pseudometrics, with respect

to the partial ordering

Ed′ > Ed ⇐⇒ Ed′ ⊂ Ed ⇐⇒ Id : (G, d′) → (G, d) is bornologous .

In particular, EL is the unique such coarse structure. Similarly, we may consider a

(finer) partial ordering on the set of left-invariant continuous pseudometrics on G:

let d ≫ d′ whenever Id : (G, d) → (G, d′) is coarsely Lipschitz. We observe that

any maximal d is unique up to quasi-isometry.

Theorem 2.19 ([Ros21, Prop. 2.72]). Let G be a Polish group. Then G admits a

continuous left-invariant pseudometric d maximal with respect to ≪ if and only if

G is boundedly generated, if and only if d is quasi-isometric to the word metric on

G with respect to a symmetric coarsely bounded generating set.

It follows that the word metric on G with respect to any coarsely bounded generat-

ing set gives a well-defined quasi-isometry type whenever G is boundedly generated.

2.2.1. Locally bounded subgroups of Map(S). For a surface S, recall that

Map(S) := Homeo+(S)/Homeo0(S)

where Homeo+(S) is the group of orientation-preserving self-homeomorphisms of

S, endowed with the compact-open topology, and Homeo0(S) is its identity com-

ponent. The induced (quotient) topology on Map(S) has a local (clopen) base at

IdS induced by the pointwise stabilizers ŨΣ := {f ∈ Homeo+(S) : f |Σ = IdΣ} of

compact, essential subsurfaces Σ ⊂ S; we denote the elements of this local base

UΣ := ŨΣ/(ŨΣ ∩Homeo0(S)) < Map(S).
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Remark 2.20. Let G ≤ Map(S) a Polish subgroup. Given an essential compact

subsurface Σ ⊂ S let νΣ denote the (pointwise) G-stabilizer for Σ, that is νΣ :=

UΣ ∩G. Since Map(S) has a local base {UΣ}Σ at IdS , likewise G has a local base

{νΣ}Σ at IdS .

Remark 2.21. Since G has a local base of open subgroups at IdS , G is non-

Archimedean.

The following is immediate from Remark 2.20:

Lemma 2.22. Let G ≤ Map(S) be a locally bounded Polish subgroup. There exists

a compact essential subsurface Σ ⊂ S whose stabilizer νΣ is coarsely bounded in G.

Some important subgroups. Let Ends(S) denote the (Freudenthal) endspace of S

and Endsg(S) ⊂ Ends(S) the subspace of non-planar ends. By PMap(S) ≤ Map(S)

we denote the pure mapping class group of S, which is the kernel of natural map

π : Map(S) → Homeo(Ends(S),Endsg(S))

obtained from the action of Map(S) on the endspace of S. Let PMapc(S) ≤
PMap(S) denote the subgroup of compactly supported (necessarily pure) mapping

classes. PMap(S) is closed in Map(S), hence it is a Polish subgroup. PMapc(S) is

not closed when S is infinite-type; let PMapc(S) denote its closure.

Remark. When ∂S = ∅ we note that PMapc(S) = Mapc(S), the (more commonly

studied) subgroup of compactly supported mapping classes.

2.3. Cayley–Abels–Rosendal graphs. Analogous to Cayley–Abels graphs for

totally disconnected, locally compact groups, Branman–Domat–Hoganson–Lyman

[BDHL25] define graphical models for boundedly generated Polish groups. We

generalize these results to the locally bounded case in Section 4.

Definition 2.23 ([BDHL25, §3]). A connected, countable simplicial graph Γ is a

Cayley–Abels–Rosendal graph for a topological group G if G admits a continuous,

vertex-transitive, cocompact, and simplicial action with coarsely bounded vertex

stabilizers.

Proposition 2.24 ([BDHL25, Prop. 8]). Let G be a Polish group. Then G admits

a Cayley–Abels–Rosendal graph if and only if G is boundedly generated. Moreover,

the orbit map of G on any such graph is a quasi-isometry.

2.4. Asymptotic dimension otherwise. We now shift our focus to the asymp-

totic dimension of mapping class groups. Asymptotic dimension was introduced by

Gromov and gives a ‘large scale’ notion of dimension; see [BD07] for a survey of

results.

Definition 2.25. Let X be a metric space. Then asdim(X) ≤ n if for every

uniformly bounded open cover U , there is a uniformly bounded open cover V of

multiplicity n+1 such that U refines V. We say that asdim(X) = n if asdim(X) ≤ n

but asdim(X) ̸≤ n− 1.

Proposition 2.26 ([BD07, Prop. 22]). Let X and Y be metric spaces with the

standard coarse structure and f : X → Y a coarse embedding. Then asdim(X) ≤
asdim(Y ).
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It follows that asymptotic dimension is a coarse invariant and hence well-defined

in the setting of locally bounded Polish groups. In particular, we can look at the

asymptotic dimension of locally bounded surface mapping class groups. When S

is a finite-type surface, [BBF15] shows that the asymptotic dimension of Map(S)

is finite. In the case of infinite type surfaces, the only result (as far as the authors

know) appears in [GRV21]. We summarize the relevant details below.

Let S be an infinite-type surface. Suppose that there exists a countable family of

homeomorphic subsurfaces Σi∈Z ⊂ S, each with a single boundary component, and

a simple path γ ⊂ S \
⋃
i Σ̊i intersecting each ∂Σi sequentially and accumulating

to two distinct ends. A shift map ω is a homeomorphism supported on a regular

neighborhood of γ ∪ (
⋃
iΣi), preserving γ set-wise and restricting to homeomor-

phisms Σi → Σi+1. If in addition ⟨ω⟩ is not coarsely bounded in Map(S), then it

is an essential shift [GRV21, §1].

Theorem 2.27 ([GRV21, Thm. 1.1]). If S is stable and Map(S) is boundedly

generated and contains an essential shift, then asdimMap(S) = ∞.

When S is stable, Theorem 1.2 and Theorem 2.27 fully classify the infinite as-

ymptotic dimension cases:

Theorem 2.28 ([GRV21, Thm. 1.6]). Let S be stable and Map(S) be boundedly

generated. If S contains neither a non-displaceable subsurface nor an essential shift,

then Map(S) is coarsely bounded.

2.5. Classification of local boundedness. Since asymptotic dimension is well-

defined for locally bounded mapping class groups, we recall results from [MR23]

and [Hil25] that classify the infinite type surfaces whose mapping class groups and

pure mapping class groups are locally bounded. Here, for A ⊂ Ends(S), M(A) is

the set of maximal ends in A with respect to the partial order on Ends(S) defined

in [MR23].

Theorem 2.29 ([MR23, Thm. 1.4]). Let S be an infinite type surface. Then

Map(S) is locally bounded if and only if there is a finite type surface Σ ⊂ S such

that the complimentary regions of K each have infinite type and zero or infinite

genus, and partition Ends(S) into finitely many clopen sets

Ends(S) =
( ⊔
A∈A

A
)
⊔
( ⊔
P∈P

P
)

such that:

(1) Each A ∈ A is self-similar with M(A) ⊂ M(Ends(S)) and M(Ends(S)) ⊂⊔
A∈AM(A).

(2) each P ∈ P is homeomorphic to a clopen subset of some A ∈ A.

(3) for any xA ∈ M(A), and any neighborhood V of the end xA ∈ S, there is

fV ∈ Homeo(S) so that fV (V ) contains the complimentary region to K with

end set A.

Moreover, in this case νΣ is a coarsely bounded neighborhood of the identity.

Theorem 2.30 ([Hil25, Thm. 1.1(b)]). Let S be an infinite type surface. Then

PMap(S) is locally bounded if and only if it is boundedly generated if and only if

|Ends(S)| <∞ and S is not a Loch Ness monster with (non-zero) punctures.
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Remark. The authors are unaware of any work concerning the local boundedness

of PMapc(S).

3. Witness-cocompactness

We discuss cocompact and witness-cocompact arc and curve models and sketch

the proof of Theorem 1.4, which we will use in Section 6 to compute the asymptotic

dimension of certain locally bounded surface mapping class groups. This section

summarizes the results of [Kop24], to which we direct the reader for full detail; it

is included here for convenience.

3.1. Cocompact arc and curve models. Let S be a surface of arbitrary topo-

logical type and let K(S) := K(V (AC(S))) denote the set of finite collections of

simple arcs and curves on S. Note the arcs and curves in u ∈ K(S) need not be

pairwise disjoint.

Definition 3.1. A (metric) arc and curve model for G ≤ Map(S) is a connected

(metric) graph G with discrete V (G) ⊂ K(S) that admits an action of G induced

by the permutation of its vertices. G is cocompact if this action is cocompact.

Remark 3.2. Throughout Section 3, a (metric) arc and curve model on S will mean

a (metric) arc and curve model for some G ≥ PMapc(S).

Remark 3.3. If S is finite-type, then (i) PMapc(S) = PMap(S) and (ii) G is co-

compact if and only if i(u, u) and i(u, v) are uniformly bounded for u ∈ V (G) and
(u, v) ∈ E(G).

Definition 3.4. Let G be an arc and curve model on S. A compact, essential

(π1-injective, non-peripheral) subsurface W ⊂ S is a witness for G if W does not

contain a pants component and every u ∈ V (G) intersects every component of W .

We note that witnesses are not assumed to be connected. Let X G denote the set

of witnesses of G, and X̂ G ⊂ X G the subset of connected witnesses. A witness set

on S is any collection of compact, essential subsurfaces without pants components

closed under enlargement and the action of PMapc(S).

By [Kop23], the geometry of cocompact arc and curve models on finite-type

surfaces is well understood. In particular:

Theorem 3.5 ([Kop24, Thm. 4.12]). Let G be a cocompact arc and curve model on

a finite-type surface Σ. Then (G,X G) is an asymphoric hierarchically hyperbolic

space with respect to subsurface projection to witness curve graphs πW : G → 2CW ,

W ∈ X G.

The PMap(Σ)-equivariant geometry of G is uniquely determined by X̂ G :

Theorem 3.6 ([Kop24, Thm. 4.13]). The map G 7→ X̂ G induces a bijection be-

tween equivariant quasi-isometry types of cocompact arc and curve models on Σ and

connected witness sets on Σ.

Remark 3.7. The above is functorial in the following sense: whenever X G′ ⊂ X G

(equivalently X̂ G′
⊂ X̂ G), there is a canonical equivariant coarsely surjective,

coarse Lipschitz map ι : G → G′.
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We note that Theorem 3.5 implies that cocompact G on a finite-type surface is

δ-hyperbolic if and only if it has no pair of disjoint, connected witnesses. More

broadly, G admits a distance formula in the sense of Masur–Minsky: there is some

K > 0 such that for any u, v ∈ V (G),

dG(u, v) ≈
∑

W∈X G

[dCW (πW (a), πW (b))]K .

3.2. Subsurface projection. Given a compact, essential, connected, non-pants

subsurface Σ ⊂ S, let K(S,Σ) ⊂ K(S) denote the subset of collections containing

an element that intersects Σ essentially. We construct a projection ρΣ : K(S,Σ) →
K(Σ) as follows (see [Sch, §5.2]). Let ι : Σ ↪→ S be the inclusion map, let p : SΣ → S

be the covering space associated to π1(Σ) ∼= im ι∗ < π1(S), and let let ι̃ : Σ ↪→ SΣ

be the (unique) lift of ι into SΣ. Fix any homeomorphism σ : SΣ → intΣ := Σ\∂Σ
that is a homotopy inverse for ι̃|int Σ; note that σ is unique up to homotopy, hence

isotopy. Obtain σ̃ by composing σ with the inclusion intΣ ↪→ Σ.

SΣ

Σ S

p

σ̃

ι

ι̃

Given u ∈ K(S,Σ), let ρΣ(u) be the closures of the non-peripheral components of

σ̃p−1(u), up to isotopy.

One verifies that ρΣ(u) is independent of the choice of representative for ω and

σ. Likewise, ρΣ is independent of the choice of embedding of Σ: if ι′ : Σ ↪→ S

is isotopic to ι, then the lift ι̃ ′ is isotopic to ι̃ and thus σ is likewise a homotopy

inverse for ι̃ ′|int Σ.

Remark 3.8. The definition here for ρΣ differs slightly from that in [Kop24], which

instead passes to the Gromov closure of SΣ; however, the definitions are consistent.

We can likewise define ρΣ(u) as the collection of essential intersections of u with Σ.

The natural action of PMap(Σ) on K(Σ) defines an action of Map(Σ, ∂Σ) ↠
PMap(Σ). Similarly, Map(Σ, ∂Σ) ↷ K(S,Σ) via the homomorphismMap(Σ, ∂Σ) →
PMapc(S) obtained by extending by identity.

Lemma 3.9 ([Kop24, Lem. 4.14]). ρΣ : K(S,Σ) → K(Σ) is Map(Σ, ∂Σ)-equivariant.

Corollary 3.10. Let ϕ ∈ PMap(Σ). Then there exists ψ ∈ PMapc(S) preserving

K(S,Σ) such that for any ω ∈ K(S,Σ), ϕρΣ(ω) = ρΣ(ψω).

3.2.1. Witness-cocompactness. Let W ⊂ S be a connected witness for an arc and

curve model G on S. Note that V (G) ⊂ K(S,W ) and obtain an arc and curve

model GW on W as follows: let V (GW ) = ρW (V (G) ⊂ K(W ), and obtain E(GW )

as the push-forward of the edge relation on G by ρW . By Corollary 3.10 PMap(W )

acts on GW by permuting its vertices and the map ρW : G → GW is Map(W,∂W )-

equivariant; since G is connected, likewise is GW . If G is a metric graph, then

likewise push forward the edge lengths on G to obtain a metric on GW ; in either

case, ρW is 1-Lipschitz.

Definition 3.11. Let G be a connected (metric) arc and curve model on S. Then

G is witness-cocompact if
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(1) G has a (compact) witness; and

(2) for every witness W ⊂ S, GW is cocompact.

Remark 3.12. From Remark 3.3, it follows that G is witness-cocompact if and only if

G has a witness and for any witnessW there is a uniform bound on i(ρW (u), ρW (u))

and i(ρW (u), ρW (v)) for u ∈ V (G) and (u, v) ∈ E(G).

Lemma 3.13. Let G be a witness-cocompact arc and curve model and let W be

a witness. Then any Map(W,∂W )-equivariant section σW : V (GW ) → V (G) is a

quasi-isometric embedding.

Proof. Since ρW is Lipschitz, it suffices to show that σW is likewise Lipschitz. Since

GW is cocompact, it has finitely many orbits of edges (ū, v̄) ∈ E(GW ). Since σW is

equivariant, there are likewise finitely many orbits of pairs (σW (ū), σW (v̄)). Let L

be the maximum of the distances dG(σW (ū), σW (v̄)) for (ū, v̄) ∈ E(GW ). Then σW
is coarsely L-Lipschitz. □

Remark. If G is witness-cocompact, then for each witness W , GW is cocompact: up

to quasi-isometry, we may endow GW with the usual simplicial metric.

3.3. Asymptotic dimension lower bounds. We sketch the arguments from

[Kop24] to prove Theorem 1.4. We begin by computing lower bounds for the as-

ymptotic dimension of cocompact arc and curve models on finite-type surfaces.

3.3.1. For finite-type surfaces. Let Σ be a finite-type surface with a cocompact arc

and curve model M. We aim to show the following:

Theorem 3.14 ([Kop24, Thm. 4.21]). Let Σ be a genus g finite-type surface. If M
is a (non-empty) δ-hyperbolic cocompact arc and curve model on Σ, then asdimM ≥
g − ⌈ 1

2χ(Σ)⌉.

Remark 3.15. In the complementary case, when M is not δ-hyperbolic or equiva-

lently whenM has ν > 1 disjoint connected witnesses, it will suffice that asdimM ≥
ν. In particular, ν is exactly the HHS rank of (M,X M), which bounds asdimM
from below [BHS21, Thm. 1.15].

We prove Theorem 3.14 by finding a compact subspace Z ⊂ ∂M of known

topological dimension. For proper δ-hyperbolic spaces, the topological dimension

of the boundary gives bounds on the asymptotic dimension of the space [BL08,

Prop. 6.2]; while M is typically non-proper, a minor adaptation of the lower bound

suffices.

Proposition 3.16 ([Kop24, Prop. 2.5]). Let X be a geodesic δ-hyperbolic space

with Z ⊂ ∂X compact. Then asdimX ≥ dimZ + 1.

We find Z as follows. Recall that, whenever M and M′ are cocompact graph

models on Σ and X M ⊃ X M′
, there is a canonical coarsely surjective, coarsely

Lipschitz map ι : M → M′. In particular, since X CΣ = {Σ}, such a map ι :

M → CΣ exists for any cocompact graph model M. We first prove that when

M is δ-hyperbolic these maps are coarsely alignment preserving in the sense of

Dowdall–Taylor [DT17]: there exists K for M,M′ such that for any aligned triple

of vertices (x, y, z) ∈ V (M)3, d(ι(x), ι(y)) + d(ι(y), ι(z)) ≤ d(ι(x), ι(z)) +K.
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Lemma 3.17 ([Kop24, Lem. 4.22]). Let M and M′ be arc and curve models on a

finite-type surface such that X M ⊃ X M′
, and let ι : M → M′ be the canonical

coarse surjection. If M is δ-hyperbolic, then ι is coarsely alignment-preserving.

The proof of Lemma 3.17 follows from the existence of hierarchy paths [BHS19,

Thm. 4.4] in M,M′. Such paths are close to geodesics and have projections to wit-

ness curve graphs that are unparameterized quasi-geodesics. Applying the distance

formulas for M,M′ derives the claim.

Crucially, the theory of alignment preserving maps implies an embedding of ∂M′

into ∂M, and in particular an embedding ∂CΣ ↪→ ∂M whenever M is δ-hyperbolic.

Theorem 3.18 ([DT17, Thm. 3.2]). Let f : X → Y be a coarsely surjective,

coarsely alignment preserving map between geodesic δ-hyperbolic spaces. Then f

induces an embedding ∂Y ↪→ ∂X.

When Σ is a punctured sphere, we then conclude using a result of Gabai:

Theorem 3.19 ([Gab14, Thm. 1.2]). Let ∆ be the (n+ 4)-times punctured sphere

for n ≥ 0. Then ∂C∆ is homeomorphic to the n-dimensional Nöbeling space R2n+1
n .

In particular, by the universal embedding property of Nöbeling spaces [Nöb30] any

n-dimensional compactum Z embeds into ∂C∆ ⊂ ∂M. For general Σ, we apply

a result of Rafi–Schleimer [RS09, Thm. 7.1] to obtain an embedding of ∂C∆ into

∂CΣ ⊂ ∂M, which completes the proof of Theorem 3.14.

Proposition 3.20 ([Kop24, Prop. 4.23]). Let Σ be a finite-type hyperbolic surface

of genus g and ∆ the (n+ 4)-times punctured sphere, where n = g − 1− ⌈ 1
2χ(Σ)⌉.

Then ∂C∆ embeds into ∂CΣ.

3.3.2. For infinite-type surfaces. We prove the following:

Theorem 3.21. Let S be an infinite-type surface and let M be a witness-cocompact

metric arc and curve model on S. Then asdimV (M) = ∞.

In particular, since V (M) is given the induced metric, it isometrically embeds into

M and Theorem 1.4 follows. By Lemma 3.13 and the monotonicity of asymptotic

dimension, it suffices to find for every d ∈ N some witness W ⊂ S for which

asdimMW ≥ d (see [Kop24, §4.3.2]).
Given a witness-cocompact arc and curve model M on an infinite-type surface

Ω, let wM ∈ N ∪ {∞} denote the least upper bound on cardinalities for a set

of pairwise-disjoint connected witnesses for M. If wM is infinite, then for each

d fix a compact subsurface Σd containing at least d pair-wise disjoint connected

witnesses for M. These witnesses are likewise witnesses for MΣd
, hence MΣd

has

rank ν ≥ d and asdimMΣd
≥ d. If wM is finite, then fix a set {∆i} of wM pairwise

disjoint witnesses, with ∆0 a witness adjacent to an infinite-type component of

S \
⋃
i∆i. By enlarging ∆0 disjointly from the remaining ∆i, we obtain compact

subsurfaces Σd ⊂ S\
⋃
i>0 ∆i such that −χ(Σd) > 2d and ∆0 ⊂ Σd. Since Σd ⊃ ∆0,

it is a witness for M, and each MΣd
must have rank ν = 1 else we obtain a

set of witnesses for M of cardinality greater than wM. It follows that MΣd
is

δ-hyperbolic. Applying Theorem 3.14, we obtain asdimMΣd
≥ d as required.

Theorem 3.21 follows. //
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4. A Švarc–Milnor lemma for locally bounded groups

Definition 4.1. The action of a group G on a metric graph Γ is bounded-cocompact

if, for every closed bounded subgraph Λ ⊂ Γ, GΛ/G is compact.

Definition 4.2. A connected metric graph Γ with a discrete vertex set V (Γ) along

with an isometric, isomorphic, and continuous action of a group G is a coarse

Cayley–Abels–Rosendal graph for G if the action is vertex-transitive and bounded-

cocompact with coarsely bounded vertex stabilizers.

Recall that a Polish group G is non-Archimedean if it has a (clopen) subgroup

neighborhood basis at identity [Kec12]. The following extends Proposition 2.24.

Proposition 4.3. Let G be a Polish group. If G admits a coarse Cayley–Abels–

Rosendal graph then it is locally bounded; moreover, for any such graph Γ the or-

bit map to V (Γ), with the induced metric, is a coarse equivalence. If G is non-

Archimedean then the converse holds.

Proof. Let ω : G→ V (Γ) denote the vertex orbit map; since the action is continu-

ous, ω is continuous. Moreover, since V (Γ) is discrete, the stabilizer of a vertex in

Γ is thus a coarsely bounded neighborhood of identity and G is locally bounded.

We must show that ω is bornologous, expanding, and cobounded, hence a coarse

equivalence: the first follows from Lemma 2.10 and the last from vertex transitivity,

hence we need only check that ω is expanding.

Let d denote the metric on Γ and fix a vertex x ∈ V (Γ); we assume ω is the

orbit map based at x. By Lemma 2.11, it suffices to show that Aα = ω−1(Bα(x)) is

coarsely bounded. Fix a connected bounded subgraph Λα ⊂ Γ containing Bα(x) ∩
imω = Bα(x) ∩ V (Γ) and let A′

α = ω−1(Λα) = {g ∈ G : gx ∈ V (Λα)}. Since V (Γ)

is discrete and G acts vertex-transitively, the infimum of edge lengths in Γ is non-

zero. Hence by bounded-cocompactness, Λα/G is a finite graph, or equivalently

Λα intersects finitely many G-orbits of edges: the midpoints of edges in Λα/G are

discrete, hence must be finite by compactness. Let νx := stabG(x) ≤ G denote the

stabilizer of x and fix a finite set of elements Fα ⊂ G so that if (gx, hx) ∈ E(Λα),

then g−1h ∈ νxFανx; additionally add some element g0 ∈ A′
α. Let m = diamΛα.

Then A′
α ⊂ (Fανx)

m, hence A′
α ⊃ Aα is coarsely bounded since likewise is νx.

The converse when G has small subgroups is shown in the following lemma. □

Lemma 4.4. If G is a non-Archimedean locally bounded Polish group, then it

admits a coarse Cayley–Abels–Rosendal graph.

Proof. Fix a coarsely bounded clopen subgroup H ≤ G and a countable set Z =

{zi} ⊂ G such that G = ⟨Z,H⟩. Such a Z always exists: for example, since

G is separable and H open, H has a countable transversal in G. Construct a

metric graph Γ on the vertex set G/H by attaching an edge of length i between

gH and kH whenever g−1k ∈ HziH. The set Z generates G over H, hence Γ is

connected. Since H is clopen, the left action of G on G/H is continuous; it induces

a continuous, isometric, isomorphic, and vertex transitive action on Γ with coarsely

bounded vertex stabilizer stabG(H) = H.

We verify bounded-cocompactness: Γ/G is the metric graph isomorphic to a

bouquet of countably many circles ei, each of length i. It suffices that if Λ is a
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subgraph of Γ for which Λ/G is not compact, then it is unbounded. In particular,

Λ/G ⊂ Γ/G must contain infinitely many edges and thus an edge of length at least

i for every i ∈ N, hence likewise does Λ. □

Remark 4.5. If there exists a finite subset Z ⊂ G and a coarsely bounded clopen

subgroup H such that G = ⟨Z,H⟩, then clearly H ∪Z is also coarsely bounded and

hence G is boundedly generated. Conversely, if G is boundedly generated, then we

may choose Z in Lemma 4.5 above to be finite by Proposition 2.12. Hence G is

boundedly generated if and only if Z can be chosen to be finite.

Remark 4.6. For a Polish group G, let H ≤ G be a coarsely bounded open subgroup

and Z ⊂ G an enumerated countable set that generates G over H. Let CH,Z(G)
denote the coarse Cayley–Abels–Rosendal graph constructed as in the proof of

Lemma 4.5; by Proposition 4.4, its vertex set is coarse equivalent to G.

H

. .
.

z1H z2H · · ·

hz1H

hz2H

· · ·

h′z1H

h′z2H

··
·

h′′z1H

h′′z2H

···

Figure 1. The neighborhood of the vertex H in CH,Z(G). Here,

h, h′, h′′ ∈ H and Z = {zi}

Remark 4.7. The construction of CH,Z(G) exactly coincides with that in [BDHL25,

§3] when Z is finite and generates G over H. In this case, CH,Z(G) has only finitely

many edge orbits and G acts cocompactly on CH,Z(G), hence CH,Z(G) (viewed as a

simplicial graph) is a Cayley–Abels–Rosendal graph for G.

5. Arc and curve models for subgroups of the mapping class group

In this section, we adapt the construction in Lemma 4.5 to the context of sub-

groups of a mapping class group of an infinite type surface S. More specifically, if

G ≤ Map(S) is a locally bounded Polish subgroup, we construct an arc and curve

model (Definition 3.1) that is also a coarse Cayley-Abels-Rosendal graph for G.

Let S be an infinite-type surface and let G ≤ Map(S) be a locally bounded

Polish subgroup. Suppose µ ∈ K(S) is a finite collection of simple arcs and sim-

ple closed curves with a coarsely bounded (set-wise) G-stabilizer νµ := stabG(µ).
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Then there exists a countable set Z ⊂ G such that G = ⟨νµ, Z⟩. Define a graph

Mµ,Z(G) with vertex set V (Mµ,Z(G)) := Gµ. Consider the G-equivariant bi-

jection V (Cνµ,Z(G)) = G/νµ
≃−→ Gµ = V (Mµ,Z(G)) defined by gνµ 7→ gµ and

obtain Mµ,Z(G) by pushing forward the (metric) edge relation in Cνµ,Z(G) to

V (Mµ,Z(G)). Note that Mµ,Z(G) is G-equivariantly isometric to Cνµ,Z(G) and

hence a coarse Cayley–Abels–Rosendal graph for G: if there exists such a µ, then

G is coarsely equivalent to Mµ,Z(G).

By Remark 4.6, G is boundedly generated if and only if Z can be chosen to be

finite, which by Remark 4.8 occurs if and only if Cνµ,Z(G) (and hence Mµ,Z(G))

is a Cayley–Abels–Rosendal graph. The following lemma shows that there indeed

exists a µ with coarsely bounded G-stabilizer νµ, whence Theorem 1.1 follows.

Lemma 5.1. Let G ≤ Map(S) be a locally bounded Polish subgroup. Then there

exists µ ∈ K(S) such that νµ is coarsely bounded in G.

Proof. Since G is locally bounded, Lemma 2.22 tells us that there exists Σ ⊂ S with

a coarsely bounded G-stabilizer νΣ. Let µ0 ∈ K(S) ∩ K(Σ) be a filling collection

of arcs and curves in Σ and µ := µ0 ∪ ∂Σ; clearly νΣ ≤ νµ. Let S(µ) denote the

permutation group on µ and let K denote the kernel of the natural map νµ → S(µ).

In general νΣ ⊆ K. Since µ0 is filling, by Alexander’s method [FM11, Prop. 2.8]

we have in fact νΣ = K. Finally since µ is a finite collection, so is S(µ) and

consequently [νΣ : νµ] ≤ |S(µ)| < ∞. By Corollary 2.13, νµ is also coarsely

bounded in G, as required. □

6. Asymptotic dimension

Throughout this section, we assume S is an infinite-type surface with a non-

displaceable subsurface for a Polish subgroup PMapc(S) ≤ G ≤ Map(S) such

that G is boundedly generated or G ∈ {PMapc(S),PMap(S),Map(S)} and locally

bounded. To prove Theorem 1.2, it suffices to choose µ and Z so that M =

Mµ,Z is witness-cocompact: by Theorem 3.21 asdimV (M) = ∞, hence likewise

asdimMap(S) = ∞ by Theorem 1.1(1). Since PMapc ≤ G it suffices to ensure that

(i) M has a witness, and (by Remark 3.12)

(ii) that edge- and self-intersection numbers are uniformly bounded.

Only condition (i) uses non-displaceability; note also that it may be satisfied

for arbitrary locally bounded Polish subgroups G ≤ Map(S). We choose µ so

that νµ is coarsely bounded and V (M) = Gµ has a witness. Let ∆ ⊂ S to be

a compact, essential, G-non-displaceable subsurface sufficiently large that ν∆ is

coarsely bounded. Fix µ0 ∈ K(∆) ∩ K(S) to be a filling collection of curves in ∆

and let µ = µ0∪∂∆. By Lemma 5.1, νµ is coarsely bounded. For any g ∈ G, gµ0 is

filling in g∆, hence since g∆ intersects ∆ essentially likewise does gµ = gµ0 ∪ ∂g∆:

∆ is a witness for M.

Intersection numbers are invariant under G ≤ Map(S), hence to ensure (ii) it

suffices that

(ii’) i(µ, ziµ) is uniformly bounded over zi ∈ Z.

In particular, i(gµ, gµ) = i(µ, µ) < ∞ and if (gµ, kµ) ∈ E(M) then g−1k = hzih
′

for some zi ∈ Z and h, h′ ∈ νµ, thus i(gµ, kµ) = i(h−1µ, zih
′µ) = i(µ, ziµ). When

G is boundedly generated we may choose Z to be finite, hence (ii’) is immediate.



GEOMETRIC MODELS FOR SURFACE MAPPING CLASS GROUPS 15

For the remainder of the section, we construct for each locally bounded case a

(countable) Z ⊂ G that generates G over νµ and satisfies (ii’).

6.1. Enforcing small intersection. We first produce topological generating sets

for G = PMapc(S),PMap(S) satisfying (ii’). In particular, since νµ is open these

generate G over νµ.

Lemma 6.1. There exists a countable generating set T for PMapc(S) such that

{i(µ, tµ)}t∈T is finite and hence bounded above.

Proof. Let Σ0 ⊂ Σ1 ⊂ Σ1 ⊂ · · · be a compact exhaustion of S such that

(1) Σ0 ⊃ ∆.

(2) If Cij denotes the simple closed curves corresponding to the Dehn-Likorish gen-

erators for Map(Σi), then {Cij}j ∪ ∂Σi ⊂ {Ci+1
k }k ∪ ∂Σi+1.

Then the collection of Dehn twists T := {Tij} along the simple closed curves Cij
generate PMapc(S). Moreover, for sufficiently large i, {Ci+1

k } \
(
{Cij} ∪ ∂Σi

)
only

consists of simple closed curves outside of ∆ and hence their corresponding Dehn

twists fix ∆ pointwise and therefore µ. As such, only finitely many of the Dehn

twists Tij act non-trivially on µ, hence {i(µ, tµ)} is a finite collection bounded above

by the maximum over these finitely many Dehn twists t ∈ T that act non-trivially

on µ. □

Recall that a handle shift is a shift map (see Section 2.4) with homeomorphic

subsurfaces Σi ∼= Σ1
1, and let h± ∈ Endsg(S) denote the (forward and backward)

accumulation points of the underlying path, which we will call the endpoints of h.

Lemma 6.2. Let H ⊂ PMap(S) be a collection of handle shifts such that {(h−, h+) :
h ∈ H} is dense in Endsg(S)× Endsg(S). For any neighborhood 1 ∈ ν ⊂ Map(S),

PMap(S) ≤ ⟨H,PMapc(S), ν⟩.

Proof. Let νP := ν ∩ PMap(S) be a clopen subgroup of PMap(S). We know

that PMap(S) is topologically generated by Dehn twists (which are compactly

supported) and handle shifts [PV18, Thm. 4], [APV20, Cor. 6 and Section 2.3].

SinceH is dense in Endsg(S)×Endsg(S), PMap(S) is in fact topologically generated

by Dehn twists and H [AV20, Thm. 4.4]. If we consider translates of νP by Dehn

twists and elements of H, we therefore get an open cover of PMap(S). Hence

PMap(S) = ⟨H,PMapc(S), νP ⟩ which implies PMap(S) ≤ ⟨H,PMapc(S), ν⟩. □

Lemma 6.3. There exists a countable set of handle shifts H ⊂ PMap(S) whose

endpoints are dense in Endsg(S) × Endsg(S) and for which i(µ, hµ) is uniformly

bounded for h ∈ H.

Proof. Let S1, . . . Sb be the complementary components of ∆. Fix k =
(
b
2

)
many

pairwise disjoint strips s{i,j}, connecting the i
th and jth complementary components

of ∆ with i ̸= j. For two distinct ends x, y ∈ Endsg(S) accumulated by genus,

consider handle shifts hxy such that

(1) If x, y ∈ Si, then Domain(hxy) ∩∆ = ∅.

(2) If x, x′ ∈ Si, y, y
′ ∈ Sj and i ̸= j, then Domain(hxy) ∩ ∆ = s{i,j} and

hxy|s{i,j} = hx′y′ |s{i,j} .
(3) For x, y ∈ Endsg(S), hyx = h−1

xy .
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Fix E ⊂ Endsg(S) × Endsg(S) a countable dense subset and set H := {hxy |
(x, y) ∈ E}. Let hij := h|s{i,j} for h ∈ H such that h− ∈ Si, h+ ∈ Sj . Note that by

(2), this is well-defined and for any h ∈ H, since µ ⊂ ∆, either h fixes µ pointwise

or i(µ, hµ) = i(µ, hijµ) for some i ̸= j. Hence i(µ, hµ) is uniformly bounded by

maxi,j i(µ, hijµ) for any h ∈ H as required. □

When G = PMapc(S), it suffices that Z = T , and when G = PMap(S), that

Z = T ∪H. //

Remark 6.4. By [Hil25] (Theorem 2.30) G = PMap(S) is locally bounded if and

only if it is boundedly generated, in which case Z may be chosen to be (in fact)

finite. We include Lemma 6.3 so that our arguments are self-contained.

S1

S2

s{1,2}

∆

Figure 2. The strips s{i,j} in ∆

We conclude with the case when G = Map(S). We aim to construct a transversal

I forK := ⟨T,H, νµ⟩ that satisfies the intersection condition (ii’); sinceK is open, I

is countable and we may set Z = T ∪H ∪I. Let E := Ends(S) and Eg := Endsg(S)

and consider the exact sequence

1 → PMap(S) → Map(S)
π−→ Homeo(E,Eg) → 1 .

It suffices to construct a (set-theoretic) section σ for π whose whose image satisfies

(ii’). Then Iσ := imσ is a transversal for PMap(S) (albeit possibly uncountable),

and since PMap(S) ≤ K by Lemma 6.2, Iσ contains a transversal I ⊂ Iσ for K

likewise satisfying (ii’). We construct σ below.

Lemma 6.5. There exists a (set-theoretic) section σ : Homeo(E,Eg) → Map(S)

such that i(µ, σ(φ)µ) is uniformly bounded over φ ∈ Homeo(E,Eg).

Remark. In the following, let Σbg,p denote the orientable surface with genus g, b

boundary components, and p punctures.

Proof. Fix some connected, essential subsurface Π ∼= Σbg,0 ⊂ S such that Π ⊃ ∆

and whose complementary components have either zero or infinite genus. Fix an

embedding of Π into Σ = Σb
2

g,0 such that Σ \ Π is the disjoint union of copies of
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Σb0,1. Let σ0 : Sym(π0(∂Σ)) → Map(Σ) be a choice of (set-theoretic) section; note

that i(µ, σ0(α)µ) is uniformly bounded over α ∈ Sym(π0(∂Σ)), a finite set.

Let Ui ⊂ E be the clopen partition induced by Π, and let Ui,j = Ui ∩ φ(Uj);
let Si ⊂ S \Π denote the complementary component containing Ui and Ci := ∂Si.

Extend each component of ∂Π by an embedded (but not necessarily essential)

Σb+1
0,0 to obtain a subsurface Πφ ∼= Σ inducing the partition Ui,j . Note that some

components of S \ Πφ may be disks and that every component has either zero or

infinite genus. Let Si,j ⊂ S \Πφ denote the complementary component containing

Ui,j and Ci,j := ∂Si,j .

Extend the embedding Π ↪→ Πφ to a homeomorphism ψφ : Σ → Πφ. Fix

a permutation αφ ∈ Sym(π0(∂Σ)) and σ1(φ) := σ0(αφ)
ψφ : Πφ → Πφ such that

C ′
j := σ1(φ)Cj separates Ci,j from σ1(φ)Π for all i. Let Π′ := σ1(φ)Π and S′

j denote

the component of S \Π′ separated by C ′
j . It follows that Π

′ = σ1(φ)Π induces the

partition φ(Uj), each of which is contained in S′
j . We note that C ′

j is homeomorphic

to Cj ; likewise, since the Sj and S′
j have either zero or infinite genus, Sj has zero

genus if and only if Uj ∩Endsg(S) = ∅ if and only if φ(Uj) ∩ Endsg(S) = ∅ if and

only if S′
j has zero genus, and otherwise both Sj , S

′
j have infinite genus. Finally, we

apply Richards’ classification theorem [Ric63] to obtain σ(φ) by extending σ1(φ)|Π
by homeomorphisms Sj → S

′
j that induce φ on each Uj . Up to isotopy µ ⊂ ∆ ⊂ Π,

hence i(µ, σ(φ)µ) = i(µ, σ0(αφ)µ) is bounded independently of φ. □

C1 C2

C ′
2C ′

1

Π

U1,1

U1,2 U2,1 U2,2

σ(φ)−−−→S2S1

S′
1

Π′

S′
2

Figure 3. The map σ(φ). Here, U1,1 = ∅
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